The FinGripper’s flexible fingers adapt to the shape of a workpiece. It reliably handles pressure-sensitive food such as chocolate eggs and fruit without damage.Overall motion control is via the CMXR robot controller that is also used with the company’s tripod handling robots and high-speed gantries. The CMXR, according to company officials, combines mechanical, drive, and control elements into a complete kinematic system that coordinates highly dynamic 3D motion.
It offers such features as motion-path smoothing, ramp shapes for acceleration, and constant path speeds, but it also protects the handling device — say from overloads. CMXR interpolates and positions all axes, so it can define the tooling end position in three dimensions. This means it can trace contours along a centerline, as is required for bonding, laser welding, and water-jet cutting. The CMXR is the interface to the master controllers, as well as to valve terminals, servo-axis motor controllers, and vision systems.
Unconventional manufacturing
A particular challenge for Festo’s engineers was how to efficiently manufacture the precise geometric structure of the pneumatic actuators and grippers. And, in fact, “this completely new handling concept is only made possible by rapid manufacturing technology,” explains Klaus Mller-Lohmeier, Manager of Advanced Prototyping Technology at Festo. The components were all made by a selective laser sintering process. “Otherwise, they wouldn’t be practical to fabricate,” he explains.
In this process, successive layers of polyamide powder just 0.1 mm thick are applied onto a base platform. Each new layer is fused to the underlying layer by a laser beam, which hardens the powder to form a solid structure. This avoids the expensive molds necessary to produce parts through conventional injection molding.
The high flexibility, excellent long-term resilience, and low density (0.95 gm/cc) of polyamide make it well suited for the Bionic Handling Assistant, says Festo. The material provides an unprecedented ratio of weight-to-force transmission capacity, a prerequisite for the device’s high performance. For instance, the FinGripper weighs about 90% less than comparable metal grippers, letting it hold and transport workpieces efficiently.
The Bionic Handling Assistant is currently only a prototype, undergoing test and evaluation. A third-generation version is due out early next year. However, the underlying design principles lend themselves to future innovations, says Festo. Possible applications extend beyond the automated gripping of delicate objects such as fruit, vegetables, eggs, and plants. Other potential uses, according to the company, include automated dairy operations, handling medical devices, and supporting the elderly and physically handicapped.
The FinGrippers, however, are currently being used on more-conventional tripod robots by nearly 20 users to quickly and reliably handle fruit, flowers and bulbs, and pressure-sensitive food such, as hollow chocolate eggs.
Watch the robot in action now: