Cutaway view of multi-port rotating manifold. Ball bearing construction allows the manifold to accommodate side loading. A drain port prevents any fluid leaking past seals from pressurizing, thereby reducing cross-channel mixing of fluids.The rotary seal is probably the most critical part of the device. This is because the seal between the rotating and stationary halves must be tight enough to prevent leakage of pressurized fluid, but loose enough to create as little torque drag as possible. Torque drag is a measure of the manifold’s resistance to rotation. These seals vary in complexity depending on the application. Rotating manifolds often use spring-loaded seals that apply seal force to prevent leakage when fluid pressure is low, while fluid pressure acts on the seal to prevent leakage under pressure. If the seal is not pressure balanced (fluid pressure acting on opposite sides of the seal), torque drag may increase with fluid pressure.
Configurations
As with any custom-engineered product, manufacturers can supply a rotating manifold to meet virtually any specification. However, standard options can be specified to provide near-custom design if four flow paths or fewer are required. Depending on their complexity and the standard product line of the manufacturer, rotating manifolds often are engineered items that must be special ordered, especially if more than four independent flow paths are required.
Standard configurations include straight-through and right angle — where outlet ports are perpendicular to inlet ports. A third configuration is offset, which is essentially a straight-through design with a 90° elbow integral to each end. Available space and fluid line routing generally determine which configuration should be used.
Keep in mind that axial length of a rotating manifold increases with the number of independent flow paths. In some applications, directional control valves can be mounted on the rotating end of the machine to allow routing only two common flow paths (pressure and return) through the rotating manifold. In this manner, all valves connect to the common flow paths through a conventional manifold or line fittings. Other considerations include through holes and integral valve.
A hole through the center of the rotating manifold can be specified as access for electrical lines, a shaft, or other machine elements that must be routed from the stationary member to the rotating one.