An evaluation of 100 hydraulic components showed that several had high levels of contamination before installation and use.
Contamination starts at the beginning
The Fluid Power Institute recently evaluated the contamination level of more than 100 new hydraulic components. This data set included hoses, tubes, fittings, valves, cylinders, pumps, and reservoirs. As can be seen in the graph, the contamination level in several new components exceeded 256 mg. This gives contamination a head start in attacking the hydraulic system at the beginning of its life.
The process of manufacturing components produces different types of contamination. Cutting a hose to length produces rubber and metal particles, as shown in the first photo. Machining a valve manifold produces cutting chips, as shown in the second photo. Welding the end caps onto a hydraulic cylinder produces iron oxide, as shown in the third image. Finally, fabricating a steel reservoir produces welding spatter in the form of molten metal, as shown in the final image. In all cases, post-processing must occur to prepare components for use in a fluid power system.
The assembly and filling process also introduces particles into a hydraulic system. Therefore, the contamination level of new systems should be verified as they are undergoing functional tests on the assembly line. Portable online particle counters are the preferred instruments for checking the cleanliness level. On-line particle counters provide a rapid means of analysis and are not susceptible to the pitfalls of bottle sampling.
The roll-off cleanliness target for a hydraulic system should be based on contamination sensitivity and working pressure as shown in Table 3. In some equipment, the system can be cleaned by simply cycling the machine’s actuators. If the system incorporates components that do not completely discharge or return fluid to the reservoir, an auxiliary flushing cart may have to be used to achieve the desired cleanliness level.