Local electrohydraulic generation system (LEHGS) consists of a reservoir, left, with accumulator and other accessories, and an electric motor-driven pump, right. In addition to emergency braking on all 20 wheels of the A380, the power units also provide backup hydraulic power for the all-important nose wheel steering system. Click on image for larger view.
Unlike conventional system modeling languages that require computer programmers to write software, the overall system model is created graphically, and engineers are prompted to enter parameters where necessary. In this way, AMESim software creates a multi-domain system model from the overall conceptual information of interconnected parts and subsystems. Importantly, it does not require a full 3-D geometry representation, so engineers can simulate and predict the behavior of intelligent systems long before detailed CAD geometry becomes available.
Throughout this process, Messier- Bugatti system engineers took advantage of convenient access to Imagine. Lab Ground Loads software. The system’s flexible licensing arrangement enabled them to optimize the use of specific modules and libraries while lowering overall system simulation expenses.
Simulating complex behavior
Ground Loads modeling and analysis capabilities allowed Messier-Bugatti to analyze behavior of hydraulic systems in terms of performance, stability, and robustness. Engineers also used the model to study the thermal characteristics of hydraulic circuits and evaluate the need for heat exchangers. These results were then used to establish the sizing, output, and other component specifications for the entire hydraulic power unit, including its reservoir, pump, and accumulator.
Using Ground Loads, engineers could also explore alternate sets of parameters and scenarios. When developing a steering system, for example, various combinations of components and systems (actuators, motors, valves, ECU, etc.) could be compared from specification to validation, thus significantly improving the steering system quality.