Image

Pressure Intensification In Hydraulic Cylinders

Jan. 26, 2016
There is a simple bench-test for testing the integrity of the piston seal in a double-acting cylinder. But it involves the intensification of pressure in the cylinder. And while the test procedure is safe if you understand the concept of intensification in a hydraulic cylinder - it is inherently dangerous if you don't.

A question I'm asked regularly is: "What is the best way to test the integrity of the piston seal in a double-acting hydraulic cylinder?"

There is a simple bench-test for doing this but it involves the intensification of pressure in the cylinder. While the test procedure is safe if you understand the concept of intensification in a hydraulic cylinder - it is inherently dangerous if you don't. In this post I will explain the dangers of intensification in a double-acting cylinder and in my next post I will explain the test procedure.

Force produced by a hydraulic cylinder is a product of pressure and area (F = p x A). In a conventional double-acting cylinder the effective area and therefore force produced by the piston and rod sides of the cylinder are unequal. It follows that if the rod side of the cylinder has half the effective area of the piston side, it will produce half the force of the piston side for the same amount of pressure.

The equation F = p x A can be transposed as p = F/A that is, pressure equals force divided by area. If the rod side of the cylinder has to resist the force developed by the piston side, with only half the area, then it needs double the pressure. This means that if the piston side is pressurized to 3,000 PSI a pressure of 6,000 PSI will be required on the rod side to produce an equal force. This is why pressure intensification can occur in a double-acting cylinder. Note that pressurizing a cylinder rated at 3,000 PSI, to 6,000 PSI, can have devastating consequences. Watch this 6-minute video for a better understanding of pressure intensification in a hydraulic cylinder.

If, for any reason, the piston side of a double-acting cylinder is pressurized and at the same time fluid is prevented from escaping from the rod side, pressure will increase (intensify) in the rod side of the cylinder until the forces become balanced or the cylinder fails catastrophically. Consider the following scenario one of our members described to me recently:

"It was minus 36 degrees here the other day and we had a hydraulic cylinder at about minus 10 degrees. The boss was attempting to press out a pin. He turned on the pump and moved the lever. Next thing, the gland of the cylinder blew out. It was a 7.5" cylinder with a 2,500 PSI operating pressure."

The gland on this hydraulic cylinder blew out as a result of pressure intensification. This was due to a blockage between the rod side of the cylinder and tank, as a result of the cold conditions. The ambient temperature had fallen below the pour point of the hydraulic oil, so the oil couldn't flow.

As you can see, pressure intensification in a double-acting hydraulic cylinder is a potentially dangerous phenomenon. And failing to consider its implications can be a costly mistake. To discover six other costly mistakes you want to be sure to avoid with your hydraulic equipment, get "Six Costly Mistakes Most Hydraulics Users Make... And How You Can Avoid Them!" available for FREE download here.

About the Author

Brendan Casey Blog | Author

Brendan Casey is a war-weary and battle-scarred veteran of the hydraulics industry. He's the author of The Hydraulic Troubleshooting Handbook, Insider Secrets to Hydraulics, Preventing Hydraulic Failures, The Definitive Guide to Hydraulic Troubleshooting, The Hydraulic Breakdown Prevention Blueprint and co-author of Hydraulics Made Easy and Advanced Hydraulic Control. And when he's not writing about hydraulics or teaching it, Brendan is flat-out helping consulting clients from a diverse range of industries solve their hydraulic problems. To contact him visit his company's Website:
www.HydraulicSupermarket.com

Continue Reading

How To Test A Hydraulic Cylinder

Feb. 3, 2016
The conventional way of testing the integrity of the piston seal in a double-acting cylinder is to pressurize the cylinder at the end of stroke and measure any leakage past the...

How To Troubleshoot Hydraulic Cylinder Drift

Feb. 23, 2016
A popular misconception about hydraulic cylinders is that if the piston seal is leaking, the cylinder will drift down. Fact is, if the piston seal is completely removed from a...

Sponsored Recommendations

MONITORING RELAYS — TYPES AND APPLICATIONS

May 15, 2024
Production equipment is expensive and needs to be protected against input abnormalities such as voltage, current, frequency, and phase to stay online and in operation for the ...

All-In-One DC-UPS Power Solutions

March 13, 2024
Introducing the All-In-One DC-UPS, a versatile solution combining multiple functionalities in a single device. Serving as a power supply, battery charger, battery care module,...

Motor Disconnect Switches

March 13, 2024
With experienced Product Engineers and Customer Service personnel, Altech provides solutions to your most pressing application challenges. All with one thought in mind - to ensure...

DC Power Solutions: Streamlined Power Supplies for Every Need

March 13, 2024
CBI All In One UPS Power Solutions combine the requirements for several applications in just one device which can be used as power supply unit, battery charger, battery care module...