On the go — With a top speed of 18 km/hr, the KIII from Jactos won't be breaking any land speed records. However, this is about as fast as a machine of this size, weight, and high profile can travel over uneven and unpredictable terrain.Once loosened from the branches, the beans fall and are collected on a sieve at the bottom of the harvester. A fan blows away leaves and other light debris, and the beans are transported via pneumatic conveyor to a trailer accompanying the harvester.
After a harvester has worked an entire field, it moves onto the next. The machine can harvest up to 8500 kg (18,700 lb) of coffee beans per hour. During a 70- to 90-day harvesting season, the harvesters work virtually 24 hr/day. Consequently, time spent traveling from one field to the next cuts into productivity. For this reason, the KIII Advance's hydrostatic propulsion system can be shifted into travel mode, enabling it to reach speeds of 18 km/hr (11.2 mph). Considering the unpredictable terrain of a typical coffee plantation, this is as fast as a machine this size can safely move.
Adjustable and versatile
Conditions from one plantation to another — and from one field to another — can vary greatly. For example, coffee fields may be located on a hillside, in a valley, or on uneven terrain. Furthermore, the coffee bushes themselves usually are of different heights and may be planted with different spacing between rows.
To address these challenges, hydraulic motors drive the wheels, hydraulic actuators change the spacing (track) of the drive wheels, and additional hydraulic actuators adjust vertical spacing of the wheels — which is essential for keeping the KIII level when harvesting on a hillside.
The combination of these three features illustrates a capability of hydraulics that would be impractical by any other means. A purely mechanical solution would be bulkier, heavier, more costly, and incorporate chain and gear drives requiring intensive maintenance. Trying to accomplish the tasks electrically would be even less practical, if it could be done at all. The hydraulic solution, however, is easy to control and by far the most compact, lightweight, and reliable.
Hydraulics for propulsion